

eco SZ2®

CuZn36Si1P | lead-free special brass

Material designation EN CW726R CuZn36Si1P UNS C68370

Chemical composition* Cu 63 % Pb max. 0.100 % Si 1 % P max. 0.10 % Zn balance

hemical composition* The material is lead-free in accordance with RoHS and ELV.

Hygienic approval for drinking water applications is being sought.

ses. The addition of silicon makes the material very easy to machine.

Material properties and typical applications

The mechanical strength values are slightly higher.

^{*}Reference values in % by weight

Physical properties*		
Electrical	MS/m	9.8
conductivity	%IACS	16
Thermal conductivity	W/(m·K)	73
Thermal expansion		
coefficient		
(0-300 °C)	10 ⁻⁶ /K	19
Density	g/cm³	8.24
Moduls of elasticity	GPa	-

^{*}Reference values at room temperature

Types of delivery

The BU Extruded Products supplies bars, wire, sections and tubes. Please get in touch with your contact person regarding the available delivery forms, dimensions and tempers.

eco SZ2® is a special brass that can be used as a replacement for leaded bras-

Its corrosion resistance and usability are comparable to those of CuZn40Pb2.

Fabrication properties								
Forming		Surface treatment						
Machinability (CuZn39Pb3 = 100 %)	90 %	Polishing	mechanical electrolytic	good poor				
Capacity for being cold worked	fair	Electroplating		excellent				
Capacity for being hot worked	excellent							

Corrosion resistance

Special brass generally exhibits excellent corrosion resistance due to alloying elements.

The addition of silicon increases the tarnish resistance and reduces the sensitivity to stress corrosion cracking.

Product standards							
Rod	EN 12164 Draft 2022						
	EN 12165 Draft 2022						
Wire	EN 12166 Draft 2022						
Section	EN 12167 Draft 2022						
Hollow rod	EN 12168 Draft 2022						

Joining		Heat treatment	
Resistance welding (butt weld)	fair	Melting range	865 - 880 °C
Inert gas shielded arc welding	fair	Hot working	550 - 650 °C
Gas welding	poor	Soft annealing	450 - 500 °C 2 - 3 h
Hard soldering	good	Thermal stress-relieving	200 - 300 °C 1 - 3 h
Soft soldering	good		

eco SZ2®

CuZn36Si1P | lead-free special brass

Round ro	ous / po	nygona	trous						acc. t	O EN 12	2164 Dra	art 202	
Temper	Diameter		Width across flat		Tensile strength	Yield strength		Elong	Elongation			Hardness	
			n mm mm mm		R _m	R _{p0.2}		A100	A11.3	Α	НВ		
	mm mm	MPa		MPa		%	%	%					
	from	to	from	to	min.	min.	max.	min.	min.	min.	min.	max	
М	ć	all		all			as manufacture						
R450	6	80	5	80	450	_	400	_	_	15	_	_	
H090	6	80	5	80	-	-	-	-	-	-	90	180	
R480	10	40	15	40	480	260	-	_	-	12	_	_	
H120	10	40	15	40	-	-	-	-	-	-	120	210	
R540	2	20	2	15	540	400	_	_	2	3	_	_	
H150	2	20	2	15	_	_	_	_	_	_	150	220	