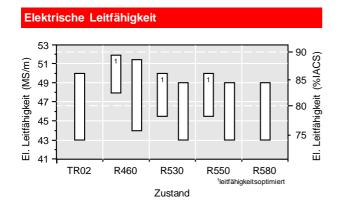


Wieland-K75

CuCrSiTi | C18070

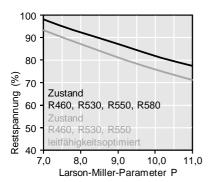

Wieland-K75 wird sehr häufig verwendet für Hochstrom-Steckverbinder. Neben sehr guter Verformbarkeit weist die Legierung eine überaus hohe elektrische Leitfähigkeit von mehr als 80 %IACS auf. Sie besitzt weiterhin hohe mechanische Festigkeit sowie eine ausgezeichnete thermische Beständigkeit. Diese herausragende Eigenschaftskombination wird erreicht durch Ausscheidungshärtungsmechanismen, durch die u. a. Titan-Silizide entstehen, die ein Grund für die hervorragende Relaxationsbeständigkeit der Legierung sind.


Zusammensetzu	ng (Richtwerte)
Cr	0,3 %
Ti	0,1 %
Si	0,02 %
Cu	Rest

Physikalische Eigenschaften (Richt	werte bei	Raumtempe	ratur)	
Elektrische Leitfähigkeit	48	MS/m	83	%IACS
Wärmeleitfähigkeit	330	W/(m·K)	190	Btu·ft/(ft²·h·℉)
Temperaturkoeffizient des elektrischen Widerstands*	3,0	10 ⁻³ /K	1,7	10 ⁻³ /℉
Wärmeausdehnungskoeffizient*	18,0	10 ⁻⁶ /K	10,0	10 ⁻⁶ /℉
Dichte	8,88	g/cm ³	0,321	lb/in ³
Elastizitätsmodul	138	GPa	20.000	ksi
Spezifische Wärme	0,385	J/(g·K)	0,092	Btu/(lb·℉)
Querkontraktionszahl	0,34		0,34	

^{*} Zwischen 0 und 300 ℃

Zustand	Zugfestigkeit R _m		0,2 %-Dehngrenze R _{p0,2}		Bruchdehnung A ₅₀	Härte HV
	MPa	ksi	MPa	ksi	%	
TR02	430-570	62-83	≥ 370	≥ 54	≥ 7	(130-150)
R460	460-560	67-81	≥ 400	≥ 58	≥ 9	(140-170)
R530	530-610	77-88	≥ 460	≥ 67	≥ 8	(150-190)
R550	550-630	80-91	≥ 520	≥ 75	≥ 7	(150-190)
R580	580-640	84-93	≥ 550	≥ 80	≥ 6	(160-200)



Wieland-K75

CuCrSiTi | C18070

Thermische Spannungsrelaxation

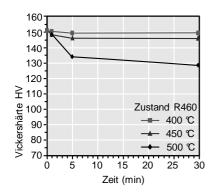
Restspannung nach thermischer Relaxation in Abhängigkeit vom Larson-Miller-Parameter P

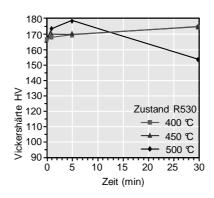
(F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) berechnet durch:

 $P = (20 + \log(t))^*(T + 273)^*0,001.$

Zeit t in Stunden, Temperatur T in ℃.

Beispiel: P = 9 ist äquivalent zu 1000 h/118 ℃.


Gemessen an thermisch entspannten Bandproben nach der Ringmethode.


Die Gesamtrelaxation ist abhängig von der aufgebrachten Spannung. Zusätzlich wird sie durch Kaltverformung z. T. deutlich erhöht.

Biegewechselfestigkeit

Die Biegewechselfestigkeit ist definiert als die maximale Biegespannungsamplitude, bei der ein Werkstoff unter symmetrischer Wechselbelastung 10^7 Lastspiele erträgt ohne zu brechen. Sie ist abhängig vom geprüften Festigkeitszustand und beträgt etwa 1/3 der Zugfestigkeit R_m .

Erweichungsbeständigkeit

Vickershärte nach Wärmebehandlung (typische Werte)

Lieferbare Ausführungen

- Bänder in Ringen mit Außendurchmesser bis 1400 mm
- Gespulte Bänder mit
 Spulengewichten bis 1,5 t
- Multicoil bis 5 t

- Feuerverzinnte Bänder
- Profilgefräste Bänder
- Bleche
- Schutzbeschichtete
 Bleche und Bänder

Lieferbare Abmessungen

- Banddicke ab 0,10 mm, dünnere Abmessungen auf Anfrage
- Bandbreite ab 3 mm, jedoch mindestens 10 x Banddicke

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA infona@wieland.com | wieland-rolledproductsna.com