

Wieland-B06/BV9

CuSn6 | Zinnbronze, phosphorhaltig

Werkstoffbezeichnung ΕN CuSn6 CW452K UNS C51900

Zusammensetzung* Sn 6,3 % B06 0,04 % BV9 0,2 % Cu Pb < 0,02 % Wieland BV9 Pb ≤ 90 ppm Cd < 50 ppm

Werkstoffeigenschaften und typische Anwendungen

Wieland-B06/BV9 ist eine Zinnbronze mit einem 6%-igen Zinnanteil, wodurch sich hohe Festigkeiten mit entsprechenden Federeigenschaften einstellen lassen. Zudem weist der Werkstoff eine gute Verschleiss- und Korrosionsbeständigkeit auf. Zinnbronzen sind gut kaltumformbar und lassen sich mit geeigneten Werkzeugparametern befriedigend zerspanen.

Unsere Variante Wieland-BV9 erfüllt mit ihren eingeschränkten Blei- und Cadmium-Gehalten die Anforderungen des Oeko-Tex Standard 100 Produktklasse I und der CPSIA.

Physikalische Eigenschaften*

Elektrische	MS/m	9
Leitfähigkeit	%IACS	15
Wärmeleitfähigkeit	$W/(m\!\cdot\! K)$	75
Wärmeausdehnungs- koeffizient		
(0-300 °C)	10 ⁻⁶ /K	18,5
Dichte	g/cm³	8,8
F Modul	CD_2	110

^{*}Richtwerte bei Raumtemperatur

Lieferformen

Die BU Extruded Products liefert Stangen, Drähte, Profile und Rohre. Bitte fragen Sie Ihren Ansprechpartner nach den lieferbaren Formen, Abmessungen und Zuständen.

Bearbeitungshinweise									
Formgebung		Oberflächenbehandlung							
Zerspanbarkeit (CuZn39Pb3 = 100 %)	20 %	Polieren mechanisch	gu						
Kaltumformen	sehr gut	elektrolytisch Galvanisieren	gu						
Warmumformen	weniger geeignet	datvariisiereri	90						

Korrosionsbeständigkeit

Allgemein sehr gute Korrosionsbeständigkeit auch gegen Seewasser, Industrieatmosphäre und Spannungsrisskorrosion.

Produktnormen	
Stange	EN 12163
Draht	EN 12166
Profil	EN 12167
Rohr	EN 12449

Verbindungsarbeiten	
Widerstands- schweissen (stumpf)	gut
Schutzgasschweissen	sehr gut
Gasschweißen	gut
Hartlöten	gut
Weichlöten	sehr gut

Wärmebehandlung	
Schmelzbereich	910-1.040 °C
Warmumformen	750-850 °C
Weichglühen	500-700 °C
	1-3 h
Thermisch	200-300 °C
Entspannen	1-3 h

gut

gut gut

^{*}Richtwerte in Gew. %

Wieland-B06/BV9

CuSn6 | Zinnbronze phosphorhaltig

Mechanis Rundstar											nach El	N 12163	
Zustand Durchmesser Schlüsselweite Zugfestigkeit R _m Dehngrenze R _{p0,2} Bruchdehnung %										g %	Härte	Härte	
mm		mm		MPa	MPa		A100	A11,3	Α	НВ			
	von	bis	von	bis	min.	min.	max.	min.	min.	min.	min.	max.	
M alle alle			wie gefertigt – ohne Vorgabe mechanischer Werte										
R340	2	60	2	60	340	_	270	35	40	45	-	-	
H080	2	60	2	60	-	-	-	-	-	-	80	110	
R420	2	40	2	40	420	220	_	-	25	30	-	_	
H120	2	40	2	40	-	-	-	-	-	-	120	155	
R520	2	8	-	_	520	400	_	4	5	_	-	-	
H150	2	8	-	-	-	-	-	-	-	_	150	180	
R700	2	4	_	_	700	600	_	-	-	-	_	_	
H180	2	4	-	-	-	-	-	-	-	-	180	215	

Rechteckstangen nach EN 12167													
Zustand Dicke		nd Dicke Zugfestigkeit R _m		Dehngrenze R _{p0,2}		Bruchdehnung %			Härte				
	mm		MPa MPa		a		A11,3	Α	НВ				
	von	bis	min.	min.	max.	min.	min.	min.	min.	max.			
М		alle	wie gef	ertigt – ohn	e Vorgabe m	nechanis	cher We	Werte					
R420	3	40	420	220	_	20	25	30	-	_			
H120	3	40	-	-	-	-	-	-	120	155			
R520	3	6	520	400	_	3	5	_	-	_			
H150	3	6	-	-	_	-	-	-	150	180			

Rohre	ohre nach EN 12449									
Zustand	Wanddicke	Zugfestigkeit R _m	Dehngr	enze R _{p0,2}	Bruchdehnung %	Härte	:			
	mm	MPa	MPa	MPa A100		HV		НВ		
	max.	min.	min.	max.	min.	min.	max.	min.	max.	
М	20		wie gefei	rtigt – ohne	Vorgabe mechanische	r Werte	'			
R340	10	340	-	260	50	_	_	_	_	
H070	10	_	-	-	_	70	105	65	100	
R400	5	400	220	_	30	_	_	_	_	
H105	5	-	-	_	-	105	150	100	145	
R490	3	490	390	_	10	_	_	_	_	
H140	3	_	_	-	-	140	175	135	170	
R580	2	580	500	_	5	_	_	_	_	
H170	2	-	-	-	-	170	_	165	-	

Runddräl	hte								nach E	N 1216	
Zustand	Durchme	sser	Zugfestigkeit R _m	Zugfestigkeit R _m Dehngrenze R _{p0,2}		Bruch	Bruchdehnung %			Härte	
			MPa	MPa		A100	A100 A11,3		НВ	3	
	von	bis	min.	min.	max.	min.	min.	min.	min.	max.	
М		alle	wie	e gefertigt – o	hne Vorgab	e mechanis	scher W	erte		'	
R340	1,5	20	340	_	270	35	40	45	-	_	
H085	1,5	20	-	-	-	-	-	-	85	115	
R420	0,1	12	420	220	_	20	25	30	-	-	
H125	1,5	12	-	-	-	-	-	-	125	165	
R520	0,1	8	520	400	_	3	5	_	_	_	
H155	1,5	8	-	-	-	-	-	-	155	190	
R700	0,1	4	700	600	_	_	_	_	_	_	
H190	1,5	4	-	-	-	-	-	-	190	225	
R900	0,1	1,5	900	800	_	_	_	_	_	_	
H245	_	-	-	-	-	-	_	-	245	-	

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Deutschland info@wieland.com | wieland.com