

Wieland-Z11

CuZn35Pb1 | Zerspanungsmessing

Werkstoffbezeichnung EN CuZn35Pb1 CW600N UNS C34000

Zusammensetzung*Cu63 %Pb1 %ZnRest

*Richtwerte in Gew. %

Werkstoffeigenschaften und typische Anwendungen

Wieland-Z11 ist ein hochkupferhaltiges Zerspanungsmessing, das eine hervorragende Kaltumformbarkeit aufweist und spanabhebend bearbeitet werden kann. Der Werkstoff ist prädestiniert für Bauteile, die neben der Zerspanung stark geprägt, genietet, gecrimpt oder gebördelt werden.

Physikalische Eigenschaften* MS/m 14,7 Elektrische Leitfähigkeit %IACS 25 Wärmeleitfähigkeit W/(m·K) 113 Wärmeausdehnungskoeffizient (0-300 °C) 10⁻⁶/K 20.4 Dichte 8.45 g/cm³ E-Modul GPa 110

Korrosionsbeständigkeit

warmen, sauren Wässern.

<u>Lieferformen</u>

Die BU Extruded Products liefert Stangen, Drähte, Profile und Rohre. Bitte fragen Sie Ihren Ansprechpartner nach den lieferbaren Formen, Abmessungen und Zuständen.

Bearbeitungshinweise	
Formgebung	
Zerspanbarkeit (CuZn39Pb3 = 100 %)	75 %
Kaltumformen	gut
Warmumformen	gut

Oberflächenbehandlur	ng
Polieren	
mechanisch elektrolytisch	gut mittel
Galvanisieren	sehr gut

Zerspanungsmessinge gelten allgemein als gut beständig gegen organische Stoffe und neutrale oder alkalische Verbindungen. Zu beachten ist bei Einsatz in vor allem ammoniakhaltiger Umgebung bei Gegenwart mechanischer Spannung die Problematik der Spannungsrisskorrosion, sowie der Entzinkung in

Verbindungsarbeiten	
Widerstands- schweissen (stumpf)	mittel
Schutzgas- schweissen	weniger geeitnet
Gasschweißen	weniger geeitnet
Hartlöten	mittel
Weichlöten	sehr gut

Wärmebehandlung	
Schmelzbereich	885-910 °C
Warmumformen	700-800 °C
Weichglühen	450-650 °C 1-3 h
Thermisch Entspannen	200-300 °C 1-3 h

Produktnormen	
Stange	EN 12164
	EN 12165
Draht	EN 12166
Profil	EN 12167
Rohr	EN 12449

Handelsmarken

Fragen Sie uns nach unserem Wiconnec-Prospekt für detailliertere Informationen.

^{*}Richtwerte bei Raumtemperatur

Wieland-Z11

CuZn35Pb1 | Zerspanungsmessing

Mechanis	sche Eig	genscha	ften nach	EN								l
Rundstar	ngen/re	gelmäß	ige Kants	tangen							nach El	N 12164
Zustand	$oxed{Zustand}$ $oxed{Durchmesser}$ $oxed{Schlüsselweite}$ $oxed{Zugfestigkeit}$ $oxed{R_m}$ $oxed{Dehngrenze}$ $oxed{R_{p0.2}}$ $oxed{Bruchdehnung}$ $\%$										Härte	
	mm		mm		MPa	Pa MPa A100 A11,3 A						
	von	bis	von	bis	min.	min.	max.	min.	min.	min.	min.	max.
М	а	lle	а	lle	wie gef	ertigt – ohn	e Vorgabe m	nechanis	scher We	erte		
R340	10	80	10	60	340	-	280	_	_	20	_	_
H070	10	80	10	60	-	-	-	-	-	-	70	120
R400	2	25	2	20	400	200	-	4	8	12	_	_
H100	2	25	2	20	-	-	-	_	_	-	100	140
R480	2	14	2	10	480	350	-	3	5	8	_	_
H125	2	14	2	10	-	-	-	_	-	_	125	-

Rechteck	Rechteckstangen nach EN 12167										
Zustand	and Dicke		Zugfestigkeit R _m	Dehngrenze R _{p0,2}		Brucho	dehnung	Härte			
	mm		MPa	Pa MPa		A100	A11,3	Α	НВ		
	von	bis	min.	min.	max.	min.	min.	min.	min.	max.	
М	а	lle	wie gefertigt – ohne Vorgabe mechanischer Werte								
R340	3	20	340	-	280	10	15	20	-	-	
H070	3	20	-	-	-	-	-	_	70	120	
R400	3	10	400	200	-	4	8	12	_	_	
H100	3	10	-	-	-	-	-	-	100	140	
R480	3	10	480	350	-	2	5	8	-	-	

Rohre									nach El	N 12449
Zustand	mm		Zugfestigkeit R _m	Dehngrenze R _{p0,2}		Bruchdehnung %	Härte			
			MPa	MPa		A100	HV	HV		
	von	bis	min.	min.	max.	min.	min.	max.	min.	max.
М	-	20		wie gefertigt – ohne Vorgabe mechanischer Werte						
R290	_	10	290	_	180	45	-	_	-	_
H060	-	10	-	-	-	-	60	90	55	85
R370	_	10	370	200	_	20	_	_	_	_
H085	-	10	-	-	-	-	85	120	80	115
R440	_	5	440	340	_	10	_	-	-	_
H115	-	5	-	-	-	-	115	-	110	-

Runddräl	hte								nach E	N 12166	
Zustand	Durchmes	ser	Zugfestigkeit R _m	Zugfestigkeit R _m Dehngrenze R _{p0,2}		Bruch	Bruchdehnung %			Härte	
	mm		MPa	MPa MPa		A100	A11,3	Α	НВ	НВ	
	von	bis	min.	min.	max.	min.	min.	min.	min.	max.	
М		alle wie gefertigt – ohne Vorgabe n				e mechani:	mechanischer Werte				
R340	0,5	20	340	_	280	10	15	20	_	_	
H080	1,5	20	-	-	-	-	-	-	80	130	
R400	0,5	14	400	200	-	4	8	12	_	_	
H100	1,5	14	-	-	-	-	-	-	100	150	
R480	0,5	8	480	350	_	2	5	_	_	_	

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Deutschland info@wieland.com | wieland.com